
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

55, 3, pp. 897-910, Warsaw 2017
DOI: 10.15632/jtam-pl.55.3.897

MODELING AND SIMULATIONS FOR QUASISTATIC FRICTIONAL

CONTACT OF A LINEAR 2D BAR

Mikael Barboteu, Nacera Djehaf
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This work considers a mathematical model that describes quasistatic evolution of an elastic
2D bar that may come in frictional contact with a deformable foundation. We present the
model and some of its underlying assumptions. In particular, the novelty in the model is
that both vertical and horizontal motions are taken into account, which makes it especially
useful when frictional contact is concerned. Contact is described with the normal compliance
condition and friction with the Coulomb law of dry friction.We introduce a hybrid variational
formulation of the problem and a numerical discretization based on a uniform time step and
the finite element method in space. The numerical algorithm has been implemented, and
we present computer simulations that illustrate the mechanical behavior of the system with
emphasis on frictional aspects of the problem.
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1. Introduction

A considerable progress has been achieved in the last two decades in the modeling, mathematical
analysis and numerical simulations of various processes involved in the mechanical contact of
solids. As a result, Mathematical Theory of Contact Mechanics (MTCM) has been reaching
a state of maturity. The theory is concerned with mathematical structures that underly the
modeling of general contact processes with different constitutive laws, i.e., different materials,
different possible geometries and different contact conditions, see for instance (Eck et al., 2005;
Han and Sofonea, 2002; Migórski et al., 2013; Panagiotopoulos, 1993; Shillor et al., 2004; Sofonea
and Matei, 2012) and the many references therein. MTCM aims to provide a sound, clear and
rigorous framework to construct models for processes involved in contact, and necessary tools
and ideas to prove the existence, possible uniqueness and regularity results for the solutions of
these models. Moreover, the variational formulation of these models leads directly and naturally
to sophisticated numerical methods for computer approximations of the solutions.
The interest in contact problems involving thin structures such as bars, rods, beams and

plates lies in the fact that their mathematical analysis is simpler as it avoids some of the com-
plications arising in 3D settings and often provide considerable insight into the possible types
of behavior of the solutions, i.e., behavior of such structures. Often, there is decoupling of some
of the equations, which simplifies the analysis and computer simulations. Moreover, one may
use such models as tests and benchmarks for computer schemes meant for simulations of more
complicated multidimensional contact problems. Models, analysis and computer simulations of
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various contact problems for rods and beams can be found in (Ahn et al., 2012; Andrews et al.,
2012; Kuttler et al., 2001; Shillor et al., 2001) and the references therein. A mathematical model
that describes unilateral contact of a beam between two deformable obstacles was studied in
(Barboteu et al., 2012b).

In this paper, we introduce a new mathematical model that describes quasistatic frictional
contact between a 2D bar and a foundation. The full model derivation and analysis can be found
in (Sofonea and Shillor, 2017). We assume that the foundation is deformable and we model the
contact with the normal compliance contact condition, and friction is described by the associated
Coulomb law. The model is two-dimensional and its main unknowns are vertical and horizontal
displacement fields, both defined on an arbitrary section of the bar. We state the variational
formulation of the model, which includes a set-inclusion related to the friction condition, then
present a numerical approach. Finally, we provide numerical simulations that illustrate the
mechanical behavior of the solution of the quasistatic frictional contact model. In particular,
we study the behavior of the numerical solution with respect to the stiffness coefficient of the
normal compliance law. This study clearly shows that the problem with a unilateral constraint,
in which the obstacle is assumed to be completely rigid, may be approached as closely as one
wishes by the solution to the contact problem with normal compliance, with a sufficiently large
stiffness coefficient.

The rest of paper is structured as follows. In Section 2, we describe our model. Section 3
introduces the variational formulation of the problem, and a fully discrete variational approxi-
mation by considering a hybrid formulation. Section 4 describes a special 2D finite rectangular
element used in the discretization of the 2D bar. In Section 5, we present numerical results on
the contact of the bar with a planar or circular foundation. Finally, in Section 6, we provide a
very short summary and mention some further topic for study.

2. The model

We consider an elastic 3D rectangular domain B identified with a region in R
3 that is the

undeformed reference configuration of the body. We denote by (x, y, z) the coordinates and we
assume that B is sufficiently long in the direction Oz so that the end effects in this direction
are negligible. Thus, B = (0, L) × (−h, h) × (−∞,+∞). Since B is a 3D body, which is infinite
in the z direction, we refer to B as a plate, and L and 2h represent its length and its thickness,
respectively. We denote in what follows by Ω = (0, L) × (−h, h) the cross section of the plate
and, therefore, B = Ω × (−∞,+∞). Moreover, when h ≪ L we refer to Ω as a 2D bar, which
is the topic of this paper.

Let ΓD = 0 × (−h, h), ΓN = (0, L) × {h}, ΓF = L × (−h, h) and ΓC = (0, L) × {−h}.
The plate is clamped on ΓD × (−∞,+∞) so the displacement field vanishes there. It is free on
ΓF × (−∞,+∞). On the top, ΓN × (−∞,+∞), it is being acted upon by distributed surface
tractions of density p. On the bottom, ΓC×(−∞,+∞), the plate may come in frictional contact
with a foundation or obstacle described by the function y = Ψ(x), which for the sake of simplicity
is assumed to be time independent. The physical setting (the cross section of the plate) is depicted
in Fig. 1. Contact is described with the normal compliance condition (in the vertical direction)
and friction with the Coulomb law of dry friction (in the horizontal direction). It is assumed
that the forces and tractions vary sufficiently slowly so that the quasistatic approximation is
valid. In addition, for the sake of simplicity, body forces are neglected.

We denote by ν the unit normal vector on the surface of B and we use the subscripts ν
and τ to represent normal and tangential components, respectively, of vectors and tensors. The
time interval of interest is [0, T ] (T > 0) and a dot above a variable represents its partial time
derivative. We denote by S3 the linear space of the second order symmetric tensors in R

3 or,
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Fig. 1. The setting of the problem; ΓC is the potential contact surface and Ψ describes
the obstacle or foundation

equivalently, the space of symmetric matrices of the order three, while “ · ” and ‖ · ‖ represent
the inner products and the Euclidean norms on R3 and S3.
The mathematical model for the quasistatic evolution of the state of the elastic plate, on the

assumptions described above, is the following (Sofonea and Shillor, 2017).

Problem P3D. Find a displacement field u : Ω × (−∞,+∞) × (0, T ) → R
3 and a stress field

σ : Ω × (−∞,+∞)× (0, T )→ S3 such that:

σ = λ( trε(u))I3 + 2δε(u) in Ω × (−∞,+∞)× (0, T ) (2.1)

Divσ = 0 in Ω × (−∞,+∞)× (0, T ) (2.2)

u = 0 on ΓD × (−∞,+∞)× (0, T ) (2.3)

σν = 0 on ΓF × (−∞,+∞)× (0, T ) (2.4)

σν = p on ΓN × (−∞,+∞)× (0, T ) (2.5)

−σν = λnc(uν − g)+ on ΓC × (−∞,+∞)× (0, T ) (2.6)

‖στ‖ ¬ µ|σν |

−στ = µ|σν |
u̇τ

‖u̇τ‖
if u̇τ 6= 0











on ΓC × (−∞,+∞)× (0, T ) (2.7)

u(0) = u0 in Ω × (−∞,+∞) (2.8)

We turn to a short description of equations and conditions (2.1)-(2.8). First, equation (2.1)
represents the linear elastic constitutive law in which λ and δ are the material Lamé coefficients,
ε(u) is the linearized strain tensor associated with the displacement field u = (u,w, v), trε(u)
denotes its trace and I3 represents the identity tensor or matrix in S

3. Equation (2.2) represents
the balance of the forces. We use it in this simplified version since we assume that the process
is quasistatic and we neglect any body forces. Here, Divσ represents divergence of the stress
field σ. Condition (2.3) describes the clamping on ΓD, and conditions (2.4) and (2.5) represent
the traction conditions, described above.
Next, we describe the contact conditions. Equality (2.6) represents the so called normal

compliance condition in which g = −h−Ψ denotes the gap between the lower surface at −h and
the obstacle, measured in the direction of the outward normal, λnc is the normal compliance
stiffness coefficient of the foundation and r+ = max{0, r}. The normal compliance condition was
introduced in (Martins and Oden, 1987) and was studied extensively, see, e.g., Han and Sofonea
(2002), Klarbring et al. (1988, 1989), Shillor et al. (2004) and the many references therein,
where more general normal compliance conditions can also be found. Condition (2.7) represents
Coulomb’s law of dry friction in which µ is the coefficient of friction, assumed to be a positive
constant. We refer to references (Eck et al., 2005; Han and Sofonea, 2002; Shillor et al., 2004;
Sofonea and Matei, 2012), among the many others for explanation of this condition and related
generalizations.
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Finally, the problem is quasistatic since Coulomb’s condition contains the tangential spe-
ed ‖u̇τ‖, therefore, we need to provide initial condition (2.8), in which u0 denotes the given
initial displacement.

Next, we follow (Gao, 1998; Gao and Russell, 1994) and introduce additional assumptions
that allow us to derive a simplified two-dimensional model associated with Problem P3D. We
assume that

p = [q, f, 0] with f = f(x, t) and q = q(x, t) (2.9)

In other words, we assume that on the top y = h the plate is subjected to a distributed vertical
load f and tangential traction q, which do not depend on z. Also, we assume that the initial
displacement is such that

u0 = [u0, w0, 0] with u0 = u0(x, y) and w0 = w0(x) (2.10)

Load (2.9) and initial data (2.10), because of the symmetry, cause deformations of the elastic
plate with a displacement field u that is independent of z in the form

u = [u,w, 0] with u = u(x, y, t) and w = w(x, t) (2.11)

Here, u is the horizontal displacement, w is the vertical one, and the displacement in the
z-direction vanishes. We note that w does not depend on y, which is also an interesting part of
the model.

It follows that the components of the stress field do not depend on z. Therefore, we are in the
situation when both the data and the unknown of this problem do not depend on z. Thus, the
simplified problem with symmetry is two-dimensional and can be formulated in the domain Ω
as follows

Problem P2D. Under assumptions (2.9) and (2.10), find a displacement field u = (u,w) :
Ω × (0, T ) → R

2 and a stress field σ : Ω × (0, T ) → S3 such that (2.1) and (2.2) hold in
Ω × (0, T ), (2.3)-(2.5) hold in ΓD × (0, T ), ΓF × (0, T ) and ΓN × (0, T ), respectively, (2.6)
and (2.7) hold in ΓC × (0, T ) and, finally, (2.8) holds in Ω.

A detailed description of Problem P2D, together with its variational analysis, including the
existence and uniqueness results, can be found in our recent paper (Sofonea and Shillor, 2017).
We also refer to Sofonea and Bartosz (2017) where the analysis of a dynamic contact problem
for viscoelastic plates was provided. There, the model considered was two-dimensional and was
derived from the full three-dimensional problem by using very similar arguments.

3. Variational form and its approximation

In this Section, we present a hybrid variational formulation of Problem P2D and then its ap-
proximation that leads to our algorithm for its numerical solutions. The method is based on a
combination of the penalty method for normal compliance condition (2.6) and the augmented
Lagrangian method for the numerical treatment of friction conditions (2.7). The Lagrange mul-
tiplier is associated with the tangential frictional traction. Then, we present the approximation
of the problem by using a uniform discretization of the time interval and the finite element
method in the plane. We use arguments similar to those used in Barboteu et al. (2012a, 2014,
2016) and, for this reason, we skip many of the details.
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3.1. A hybrid variational formulation

To introduce the hybrid variational problem, we need the following function spaces. We note
that u = u(x, y, t) is defined on Ω × [0, T ] while w = w(x, t) is defined on [0, L] × [0, T ], which
is the peculiarity of our problem, hence we seek the displacement field in the spaces

V = {u ∈ H1(Ω) : u(0, ·) = 0} W = {w ∈ H1(0, L) : w(0) = 0} X = V ×W

These are real Hilbert spaces with inner products defined by

(u, ψ)V =

∫∫

Ω

(uw + uxψx + uyψy) dx dy ψ ∈ V

(w,ϕ)W =

L
∫

0

(wψ + wxψx) dx w,ϕ ∈W

(u,v)X = (u, ψ)V + (w,ϕ)W u = [u,w], v = [ψ,ϕ] ∈ X

We seek for the stress field in the space

Q =
{

σ = (σij) : σij = σji ∈ L
2(Ω)
}

endowed with its canonical inner product. Also, we consider the function f : [0, T ] → X given
by

(f(t),v)X =

L
∫

0

q(x, t)ψ(x, h) dx+

L
∫

0

f(x, t)ϕ(x) dx

for all u = [u,w], v = [ψ,ϕ] ∈ X and t ∈ [0, T ]. Note that the definition of f is based on Riesz’s
representation theorem, under appropriate regularity assumptions on q and f .

To deal with the Lagrange multiplier, we introduce the space Xτ = {ψ(x,−h) : ψ ∈ V },
equipped with its usual norm and denote by X ′τ its dual. Then, we introduce a function Iτ :
Xτ → (−∞,+∞] by

Iτ (ψ) =

L
∫

0

|ψ(x,−h)| dx ψ ∈ Xτ

Next, we note that for all t ∈ (0, T ), friction condition (2.7) is equivalent to the subdifferential
inclusion

−ξτ (t) ∈ −µλnc(−w(t)− g)+∂Iτ (u̇(t)) in X ′ν (3.1)

where ∂Iτ denotes the subdifferential of Iτ in the sense of the convex analysis. Inclusion (3.1) le-
ads us to consider the Lagrange multiplier that is related to the friction traction and is considered
as an additional unknown. Then, the hybrid variational formulation of the contact problem P2D,
obtained by multiplying the equations with the relevant test functions and performing integra-
tion by parts, is as follows.

Problem PV2D. Given u0 ∈ X, find a displacement field u = [u,w] : [0, T ] → X, a stress field
σ : [0, T ]→ Q and a Lagrange multiplier ξτ : [0, T ]→ X ′τ such that for all t ∈ [0, T ]
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σ(t) = λ( trε(u(t)))I2 + 2δε(u(t)) in Ω (3.2)

∫∫

Ω

σ(t) · ε(v) dx−

L
∫

0

λnc(−w(t)− g)+ϕ dx

(3.3)

−

L
∫

0

ξτ (t)ψ(x,−h) dx = (f(t),v)X v = [ϕ,ψ] ∈ X

−ξτ (t) ∈ −µλnc(−w(t)− g)∂Iτ (u̇(t)) in X ′ν (3.4)

u(0) = u0 in Ω (3.5)

3.2. Numerical approximation

We turn to the numerical approximation of Problem PV2D. We use the finite element method
for spatial discretization of the domain Ω by introducing a specific finite rectangle element and
a uniform discretization of the time interval [0, T ]. Since Ω is a rectangular domain, we denote
by {T h} a regular family of rectangular finite element partitions of Ω that are compatible
with the boundary decomposition Γ = ΓD ∪ ΓN ∪ ΓF ∪ ΓC . Here and below, h represents the
spatial discretization parameter. In the numerical examples presented in the next Section, we
approximate the spaceX by the finite dimensional space of continuous piecewise affine functions,
denoted Xh. The space Q is approximated by the finite element space of piecewise constants,
denoted Qh. For the discretization of the Lagrange multiplier ξτ , we consider a discrete space
Y h
τ ⊂ X

′

τ∩L
2(ΓC). For the time discretization, we use a collection of discrete times {tn}

N
n=0 which

define a uniform partition of the time interval [0, T ] =
⋃N
n=1[tn−1, tn] with t0 = 0, tn = tn−1 + k

and tN = T , where N > 0 is an integer and k = T/N is the time step size. We use the notation
gj = f(tj), 0 ¬ j ¬ N , for a continuous function g(t) with values in a function space. Additional
details about the discretization can be found in (Khenous, 2006a,b).
Let uh0 ∈ X

h be a finite element approximation of u0. Then, using the previous notations

and an implicit Euler scheme δuhkn = (u
hk
n −u

hk
n−1)/k for the approximation of the time direvative

u̇(x,−h), the fully discrete approximation of Problem PV
h

2D at the time tn is the following.

Problem PV
h

2D . Find a discrete displacement field u
hk = {uhkn }

N
n=0 ⊂ X

h, a discrete stress field

σ
hk = {σhkn }

N
n=0 ⊂ Q

h and a discrete tangential traction ξhkτ = {ξτ
hk
n }
N
n=0 ⊂ Y

h
τ such that,

for all n = 1, . . . , N

σ
hk
n = λ( trε(u

hk
n ))I2 + 2δε(u

hk
n ) (3.6)

∫∫

Ω

σ
hk
n · ε(v

h) dx−

L
∫

0

λnc(−w
hk
n − g)+ϕ

h dx

(3.7)

−

L
∫

0

ξτ
hk
n ψ
h(x,−h) dx = (fhkn ,v

h)X ∀vh = (ϕh, ψh) ∈ Xh

−ξτ
hk
n ∈ −µλnc(−w

hk
n − g)+∂Iτ (δu

hk
n ) (3.8)

u
hk
0 = u

h
0 (3.9)

Concerning the numerical solution of hybrid variational Problem PV
h

2D , we have the following
comments: The numerical treatment of condition (3.8) is based on a combination of the penalty
method for the normal compliance condition, with an augmented Lagrangian method for the
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friction condition. Then, the numerical approximation of Problem PV
h

2D leads at each time step to
the solution of a system of nonlinear equations. Next, the unknown pair (u, ξτ ) of this nonlinear
system is computed by using a generalized Newton method which leads, at each iteration, to
the solution of a linear non-symmetric system. Details on this method can be found in (Laursen,
2002). Finally, the successive linear non-symmetric systems are solved by using a Conjugate
Gradient Squared Method (CGS) with Incomplete LU factorization preconditioners. We note
that the contact and friction terms lead to poor conditioning of the non-symmetric system matrix
that is overcome by using an element-by-element factorization, see Alart et al. (1997) for details.

4. A specific finite rectangular element

In this Section, we focus on the presentation of a 2D finite rectangular element used in the
discretization of the 2D linear elastic bar considered in this work. Since the domain Ω is rectan-
gular, we consider finite rectangular elements Ωe for the spatial discretization of Ω. Due to the
fact that the horizontal displacement u depends on x and y, and the vertical displacement w
depends only on x, the use of the usual isoparametric formulation is not possible. Therefore,
in each element we introduce the following displacement interpolations for u(x, y) and w(x),
respectively (see Fig. 2).

Fig. 2. 2D finite rectangular element

We write

u(ξ, η) = N(ξ, η)ue w(ξ) =M(ξ)we (4.1)

where the shape functions N and M are defined in the local coordinate system (ξ, η) by

N(ξ, η) =
1

4











(1− ξ)(1− η)
(1 + ξ)(1− η)
(1 + ξ)(1 + η)
(1− ξ)(1 + η)











T

M(ξ) =
1

2

[

1− ξ
1 + ξ

]T

(4.2)

In (4.1), we use ue and we to denote the vectors of displacements at the local nodes of the finite
rectangular element, that is

ue =











u1
u2
u3
u4











we =

[

w1
w2

]

=

[

w3
w4

]

(4.3)

We note that in contrast with the displacement interpolations used in the literature, the
required mapping from the local coordinate system (ξ, η) to the global coordinate system (x, y)
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is based on the same shape function N, both for x and y. Then, the finite element mapping can
be defined by

x = N(ξ, η)xe y = N(ξ, η)ye (4.4)

Here, the local vectors xe and ye contain the value of the local coordinates at the nodes of the
rectangle, that is

xe =
[

x1 x2 x3 x4
]T
=
[

x1 x1 + a x1 + a x1
]T

ye =
[

y1 y2 y3 y4
]T
=
[

y1 y1 y1 + b y1 + b
]T

where a and b are real positive numbers that represent the width and height of the rectangle,
respectively.

Based on (4.1) and (4.4), we construct in what follows the element stiffness matrixKe arising
from the elementary discretization of the first term in (3.3). To this end, we consider a special
finite rectangular element oriented with its sides parallel to the x, y axes. Then, the Jacobian
mapping matrix J is defined by

J(ξ, η) =









∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η









=









∂N1
∂ξ

∂N2
∂ξ

∂N3
∂ξ

∂N4
∂ξ

∂N1
∂η

∂N2
∂η

∂N3
∂η

∂N4
∂η



















x1 y1
x2 y2
x3 y3
x4 y4











In our special case, by using the shape function N given in (4.2), we obtain

J(ξ, η) =
1

4

[

−1 + η 1− η 1 + η −1− η
−1 + ξ −1− ξ 1 + ξ 1− ξ

]











x1 y1
x1 + a y1
x1 + a y1 + b
x1 y1 + b











As is customary in the finite element method, we use a vectorial notation for the components
of both the strain tensor ε and the stress tensor σ, i.e.

ε =







εxx
εyy
2εxy






=







ux
wy

uy +wx






=

















∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

















[

u(x, y)
w(x)

]

(4.5)

and

σ =







σxx
σyy
2σxy






= Eε (4.6)

Here, the matrix E takes into account the linear elastic constitutive behavior given in (3.2) and
is defined by

E =







λ+ 2δ λ 0
λ λ+ 2δ 0
0 0 δ






=







E1 E2 0
E2 E3 0
0 0 E6
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Using (4.1) and (4.2), equalities (4.5) and (4.6) yield

ε = B(ξ, η) · de σ = EB(ξ, η) · de (4.7)

where de = [ue, we]T is the vector of nodal variables and B(ξ, η) is the deformation strain-
displacement matrix given by

B(ξ, η) =















∂N1
∂x

∂N2
∂x

∂N3
∂x

∂N4
∂x

0 0

0 0 0 0 0 0

∂N1
∂y

∂N2
∂y

∂N3
∂y

∂N4
∂y

∂M1
∂x

∂M2
∂x















(4.8)

It follows from forms (4.2) of the shape functions N and M that

B(ξ, η) =















−
1

2a
(1− η)

1

2a
(1− η)

1

2a
(1 + η) −

1

2a
(1 + η) 0 0

0 0 0 0 0 0

−
1

2b
(1− ξ) −

1

2b
(1 + ξ)

1

2b
(1 + ξ)

1

2b
(1− ξ) −

1

a

1

a















Using now (4.7), the element stiffness matrix Ke of our 2D linear elastic bar can be written
as

Ke =

∫

Ωe

BTEB dΩ =
4
∑

i=1

1

4
[B(ξi, ηi)]

TE[B(ξi, ηi)]|J |ωi.

Then, after some algebra, we derive the following element stiffness matrix

Ke =
ab

16









































2
(E1
a2
+
E6
b2

)

−2
E1
a2

0 −2
E6
b2

2
E6
ab

−2
E6
ab

−2
E1
a2

2
(E1
a2
+
E6
b2

)

−2
E6
b2

0 2
E6
ab

−2
E6
ab

0 −2
E6
b2

2
(E1
a2
+
E6
b2

)

−2
E1
a2

−2
E6
ab

2
E6
ab

−2
E6
b2

0 −2
E1
a2

2
(E1
a2
+
E6
b2

)

−2
E6
ab

2
E6
ab

2
E6
ab

2
E6
ab

−2
E6
ab

−2
E6
ab

−4
E6
a2

4
E6
a2

−2
E6
ab

−2
E6
ab

2
E6
ab

2
E6
ab

−4
E6
a2

4
E6
a2









































(4.9)

This form, (4.9), of the element stiffness matrix is the starting point in the construction of the
global stiffness matrix of the system to be solved.

5. Numerical simulations

The method described in the previous Section has been implemented and a number of compu-
ter solutions for the contact problem obtained. Here, we present numerical simulations of two
settings in which the foundation is either planar or curved. In the first case, the foundation is
defined by the function Ψ(x) = −0.1. In the second case, it is a circular arc lying on the circle
defined by the function y = Ψ(x) that is given by (x− 0.5)2 + (y + 1)2 = 0.92.
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Fig. 3. The bar in potential contact with a planar obstacle

Fig. 4. The bar in potential contact with a circular obstacle

The physical settings of these two configurations are depicted in Figs. 3 and 4. We pay
particular attention to the mechanical aspects of the frictional contact conditions (2.6) and
(2.7) and we provide a study of the dependence of the numerical solution with respect to the
stiffness coefficient of the normal compliance law.
In the computations, we use a rectangular mesh composed of a uniform partition of finite

rectangular elements introduced in the previous Section. The spatial discretization parameters
in both the x and y directions are hx = 1/128 and hy = 1/240, respectively. The rest of the data
are the following: L = 1m, h = 0.05m, E = 1000N/m2, G = 0.3, T = 1.1 s, N = 11, k = 0.1 s,
f = [0,−20] N/m2 on ΓN , µ = 0.4 (friction) and µ = 0 (frictionless), u0 = [0, 0] m in Ω.
Our numerical simulations are presented in Figs. 5-10 below in which the deformed con-

figuration of the bar, at the end of the time interval, is depicted. The arrows in the figures
that originate on the contact surface represent the frictional contact interface tractions exer-
ted by the bar on the foundation. Moreover, for the simulations presented in Figs. 5-8, we use
λnc = 100N/m

2. A detailed description of our numerical results is the following.

We observe in Fig. 5 that in the case of a planar obstacle, the contact takes place on a large
fraction of the contact nodes on the contacting surface y = −h and so the interface tractions
are nonzero there. Here, we chose the friction coefficient to be µ = 0.4, which is rather large, to
make the effects more noticeable. Moreover, it is seen that the nodes that are on the right side
of the contact region are in a stick state, a state in which u̇ = 0. The other nodes that are in
active contact are in a slip state. This is a state in which u̇ 6= 0 and the friction bound has been
reached by the friction traction. In the frictionless case, depicted in Fig. 6, when µ = 0, we note
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that the contact forces are vertical and all the nodes that are in active contact are in the slip
state (since the friction bound vanishes).

Fig. 5. Deformed mesh and interface tractions in the frictional case, µ = 0.4

Fig. 6. Deformed mesh and interface tractions in the frictionless case, µ = 0

We turn to describe the second case of contact with a circular obstacle, see Fig. 7. In contrast
to the first case, here active contact arises in fewer nodes on the contact boundary and the rest
of the boundary is in state of separation where the interface tractions vanish. We note that most
of the nodes in contact are in the slip state, and only a few nodes are in the stick state. In the
frictionless case, Fig. 8, all the contact nodes are in the slip state and the contact tractions are
oriented in the normal direction of the foundation.

Fig. 7. Deformed mesh and interface tractions in the case with friction

Fig. 8. Deformed mesh and interface tractions in the frictionless case
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We next describe our numerical experiments concerning the normal compliance stiffness co-
efficient λnc, since we expect the solutions to the problem with the normal compliance condition
to converge, as λnc → ∞, to the solutions of the problem with the Signorini nonpenetration
contact condition. The latter describes a perfectly rigid foundation. We present results obta-
ined in the case of the planar obstacle in Fig. 9, for four different values of λnc. We plot the
deformed configurations as well as the frictional contact interface tractions for λnc = 1N/m

2,
10N/m2, 100N/m2 and λnc = 1000N/m

2. We note that for λnc = 1N/m
2, a large proportion of

the contact nodes are in relatively large penetration into the foundation since, in this case, the
foundation is soft and so easily deformable. As the stiffness coefficient λnc becomes larger, the
penetration of the bar into the foundation decreases. For λnc = 1000N/m

2, we observe that the
penetration is negligible. This behavior of the numerical solution shows that for a large stiffness
coefficient λnc, the foundation behaves like a rigid one, and shows that we may use the normal
compliance as an approximation for very stiff foundations.

Fig. 9. Deformed mesh and interface tractions for various values of λnc

Fig. 10. Deformed mesh and interface tractions for various values of λnc

Finally, in Fig. 10, we present similar results for the case of the circular obstacle. These results
provide the same conclusion: the contact problem with unilateral constraint may be approched
by a contact problem with normal compliance, with a sufficiently large stiffness coefficient. Our
numerical results are sumarized in Table 1.
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Table 1

λnc = 1 λnc = 10 λnc = 100 λnc = 1000 λnc = 10000

max. penetration
0.242322 0.0285327 0.003274 0.000418 0.000438

(planar obstacle)

max. penetration
0.188659 0.032852 0.005161 0.000984 0.000101

(circular obstacle)

6. Conclusions and comments

This work presents a two-dimensional model for a long thin bar. It is simpler than a 2D model
of an elastic long object in which the vertical displacement depends only on x. This makes the
model easier to analyze and computationally simulate. The numerical simulations show that the
model is especially useful in dealing with frictional contact.

The extension of the model to include dynamic effects is straightforward. It may be of interest
to extend the model and set it as an optimal control problem by introducing the traction on the
top surface as the control. Finally, more numerical simulations with different friction coefficients
may be of interest (see, e.g., Barboteu et al., 2012b; Gao and Russell, 1994).
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